Epileptic seizure detection using CHB-MIT dataset: The overlooked perspectives

Author:

Ali Emran1ORCID,Angelova Maia123ORCID,Karmakar Chandan1ORCID

Affiliation:

1. School of Information Technology, Deakin University, Melbourne Burwood Campus , Melbourne, Victoria 3125, Australia

2. Aston Digital Futures Institute, EPS, Aston University , Birmingham, UK

3. Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences , Sofia, Bulgaria

Abstract

Epilepsy is a life-threatening neurological condition. Manual detection of epileptic seizures (ES) is laborious and burdensome. Machine learning techniques applied to electroencephalography (EEG) signals are widely used for automatic seizure detection. Some key factors are worth considering for the real-world applicability of such systems: (i) continuous EEG data typically has a higher class imbalance; (ii) higher variability across subjects is present in physiological signals such as EEG; and (iii) seizure event detection is more practical than random segment detection. Most prior studies failed to address these crucial factors altogether for seizure detection. In this study, we intend to investigate a generalized cross-subject seizure event detection system using the continuous EEG signals from the CHB-MIT dataset that considers all these overlooked aspects. A 5-second non-overlapping window is used to extract 92 features from 22 EEG channels; however, the most significant 32 features from each channel are used in experimentation. Seizure classification is done using a Random Forest (RF) classifier for segment detection, followed by a post-processing method used for event detection. Adopting all the above-mentioned essential aspects, the proposed event detection system achieved 72.63% and 75.34% sensitivity for subject-wise 5-fold and leave-one-out analyses, respectively. This study presents the real-world scenario for ES event detectors and furthers the understanding of such detection systems.

Publisher

The Royal Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3