EMBEDDING POINT SETS INTO PLANE GRAPHS OF SMALL DILATION

Author:

EBBERS-BAUMANN ANNETTE1,GRÜNE ANSGAR1,KLEIN ROLF1,KARPINSKI MAREK2,KNAUER CHRISTIAN3,LINGAS ANDRZEJ4

Affiliation:

1. Institute of Computer Science I, University of Bonn, D-53117 Bonn, Germany

2. Institute of Computer Science V, University of Bonn, D-53117 Bonn, Germany

3. Institute of Computer Science, FU Berlin, D-14195 Berlin, Germany

4. Department of Computer Science, Lund University, 22100 Lund, Sweden

Abstract

Let S be a set of points in the plane. What is the minimum possible dilation of all plane graphs that contain S? Even for a set S as simple as five points evenly placed on the circle, this question seems hard to answer; it is not even clear if there exists a lower bound > 1. In this paper we provide the first upper and lower bounds for the embedding problem. 1. Each finite point set can be embedded into the vertex set of a finite triangulation of dilation ≤ 1.1247. 2. Each embedding of a closed convex curve has dilation ≥ 1.00157. 3. Let P be the plane graph that results from intersecting n infinite families of equidistant, parallel lines in general position. Then the vertex set of P has dilation [Formula: see text].

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Computational Mathematics,Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science

Reference11 articles.

1. T. M. Apostol, Dirichlet Series in Number Theory, 2nd edn. (Springer-Verlag, 1997) pp. 148–155.

2. Delaunay graphs are almost as good as complete graphs

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dilation of Geometric Networks;Encyclopedia of Algorithms;2016

2. Most Finite Point Sets in the Plane have Dilation $$>1$$ > 1;Discrete & Computational Geometry;2014-12-17

3. Dilation of Geometric Networks;Encyclopedia of Algorithms;2014

4. On plane geometric spanners: A survey and open problems;Computational Geometry;2013-10

5. Self-approaching Graphs;Graph Drawing;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3