Most Finite Point Sets in the Plane have Dilation $$>1$$ > 1
-
Published:2014-12-17
Issue:1
Volume:53
Page:80-106
-
ISSN:0179-5376
-
Container-title:Discrete & Computational Geometry
-
language:en
-
Short-container-title:Discrete Comput Geom
Author:
Klein Rolf,Kutz Martin,Penninger Rainer
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Theoretical Computer Science
Reference18 articles.
1. Agarwal, P.K., Klein, R., Knauer, C., Langerman, S., Morin, P., Sharir, M., Soss, M.A.: Computing the detour and spanning ratio of paths, trees, and cycles in 2D and 3D. Discrete Comput. Geom. 39(1–3), 17–37 (2008) 2. Aronov, B., de Berg, M., Cheong, O., Gudmundsson, J., Haverkort, H.J., Smid, M.H.M., Vigneron, A.: Sparse geometric graphs with small dilation. Comput. Geom. 40(3), 207–219 (2008) 3. Bose, P., Devroye, L., Löffler, M., Snoeyink, J., Verma, V.: The spanning ratio of the Delaunay triangulation is greater than $$\pi /2$$ π / 2 . In: CCCG, pp. 165–167 (2009) 4. Dumitrescu, A., Ebbers-Baumann, A., Grüne, A., Klein, R., Rote, G.: On geometric dilation and halving chords. In: Dehne, F.K.H.A., López-Ortiz, A., Sack, J.-R. (eds.) Algorithms and Data Structures. Proceedings of the 9th International Workshop, WADS 2005, Waterloo, Canada, 15–17 August, 2005. Lecture Notes in Computer Science, vol. 3608, pp. 244–255. Springer, Berlin (2005) 5. Dumitrescu, A., Ebbers-Baumann, A., Grüne, A., Klein, R., Rote, G.: On the geometric dilation of closed curves, graphs, and point sets. Comput. Geom. Theory Appl. 36(1), 16–38 (2007)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Bounded-Degree Plane Geometric Spanners in Practice;ACM Journal of Experimental Algorithmics;2023-04-08 2. Lattice spanners of low degree;Discrete Mathematics, Algorithms and Applications;2016-08 3. Lower Bounds on the Dilation of Plane Spanners;International Journal of Computational Geometry & Applications;2016-06 4. Lattice Spanners of Low Degree;Algorithms and Discrete Applied Mathematics;2016 5. Lower Bounds on the Dilation of Plane Spanners;Algorithms and Discrete Applied Mathematics;2016
|
|