Publisher
Springer Berlin Heidelberg
Reference12 articles.
1. Aronov B, de Berg M, Cheong O, Gudmundsson J, Haverkort H, Vigneron A (2005) Sparse geometric graphs with small dilation. In: Deng X, Du D (eds) Algorithms and computation: proceedings of the 16th international symposium (ISAAC 2005), Sanya. LNCS, vol 3827, pp 50–59. Springer, Berlin
2. Das G, Joseph D (1989) Which triangulations approximate the complete graph? In: Proceedings of the international symposium on optimal algorithms, Varna. LNCS, vol 401, pp 168–192. Springer, Berlin
3. Dobkin DP, Friedman SJ, Supowit KJ (1990) Delaunay graphs are almost as good as complete graphs. Discret Comput Geom 5:399–407
4. Ebbers-Baumann A, Gruene A, Karpinski M, Klein R, Knauer C, Lingas A (2007) Embedding point sets into plane graphs of small dilation. Int J Comput Geom Appl 17(3):201–230
5. Eppstein D, The geometry junkyard.
http://www.ics.uci.edu/~eppstein/junkyard/dilation-free/