A hybrid physics-informed neural network for nonlinear partial differential equation

Author:

Lv Chunyue12,Wang Lei12,Xie Chenming3

Affiliation:

1. School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, P. R. China

2. Center for Mathematical Sciences, China University of Geosciences, Wuhan 430074, P. R. China

3. Kindo Medical Data Technology Company Limited, Wuhan 430073, P. R. China

Abstract

The recently developed physics-informed machine learning has made great progress for solving nonlinear partial differential equations (PDEs), however, it may fail to provide reasonable approximations to the PDEs with discontinuous solutions. In this paper, we focus on the discrete time physics-informed neural network (PINN), and propose a hybrid PINN (hPINN) scheme for the nonlinear PDEs. In this approach, the local solution structures are classified as smooth and nonsmooth scales by introducing a discontinuity indicator, and then the automatic differentiation technique is employed for resolving smooth scales, while an improved weighted essentially nonoscillatory (WENO) scheme is adopted to capture discontinuities. We then test the present approach by considering the viscous and inviscid Burgers equations, and it is shown that compared with original discrete time PINN, the present hPINN approach has a better performance in approximating the discontinuous solution even at a relatively larger time step.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3