Existence analysis of solutions to the linear Schrödinger Kirchhoff Poisson equation based on interrupted finite elements

Author:

Chen Yafei1,Ge Kangkang2

Affiliation:

1. School of Mathematics and Computer Science , Shaanxi University of Technology , Hanzhong , Shaanxi , , China .

2. College of education, Huaibei Institute of Technology , Huaibei , Anhui , , China .

Abstract

Abstract In this paper, we firstly explore the existence of solutions to the following linear Schrödinger Kirchhoff Poisson equation with critical exponential growth on the full space □3 by using the discontinuous finite element (DG) as well as the principle of centralized compactness: { ( a + b 3 | u | 2 ) Δ u + V ( x ) u + φ u - 1 2 u Δ ( u 2 ) = K ( x ) u p 2 u , x 3 Δ φ = u 2 , x 3 \left\{ {\matrix{{ - \left( {a + b\int_{{\square^3}} {{{\left| {\nabla u} \right|}^2}} } \right)\Delta u + V\left( x \right)u + \phi u - {1 \over 2}u\Delta \left( {{u^2}} \right) = K\left( x \right){u^{p - 2}}u,} & {x \in {\square^3}} \cr { - \Delta \phi = {u^2},} & {x \in {\square^3}} \cr } } \right. , x ∈. Secondly, we make reasonable assumptions on the V, K , f functions of the equation, and use the principle of variational division to firstly obtain the corresponding energy generalization of this equation, and then we prove the corresponding generalizations of the equation satisfy the (C) c conditions. Finally, the existence of the solution of the equation is obtained by numerical simulation and then by using the Yamaji Lemma. The results show that the error of the finite element solution of the linear Schrödinger Kirchhoff Poisson equation in the spatial direction P1 reaches the optimal estimation under the L 2 -parameter in an intermittent finite element numerical simulation environment, i.e., it is proved that there exist at least 1 and 3 positive solutions to the problem. The paper achieves rich research results which are informative for the solution of this class of linear differential equations.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3