Spectral-bias and kernel-task alignment in physically informed neural networks

Author:

Seroussi InbarORCID,Miron Asaf,Ringel Zohar

Abstract

Abstract Physically informed neural networks (PINNs) are a promising emerging method for solving differential equations. As in many other deep learning approaches, the choice of PINN design and training protocol requires careful craftsmanship. Here, we suggest a comprehensive theoretical framework that sheds light on this important problem. Leveraging an equivalence between infinitely over-parameterized neural networks and Gaussian process regression, we derive an integro-differential equation that governs PINN prediction in the large data-set limit—the neurally-informed equation. This equation augments the original one by a kernel term reflecting architecture choices. It allows quantifying implicit bias induced by the network via a spectral decomposition of the source term in the original differential equation.

Publisher

IOP Publishing

Reference50 articles.

1. Imagenet classification with deep convolutional neural networks;Krizhevsky,2012

2. Highly accurate protein structure prediction with alphafold;Jumper;Nature,2021

3. Language models are few-shot learners;Brown,2020

4. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations;Raissi;J. Comput. Phys.,2019

5. Physics-informed neural networks for high-speed flows;Mao;Comput. Methods Appl. Mech. Eng.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3