CLUSTERING EFFECT OF USER-OBJECT BIPARTITE NETWORK ON PERSONALIZED RECOMMENDATION

Author:

GUO QIANG12,LIU JIAN-GUO12

Affiliation:

1. Business School, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China

2. Research Center of Complex Systems Science, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China

Abstract

In this paper, the statistical property of the bipartite network, namely clustering coefficient C4 is taken into account and be embedded into the collaborative filtering (CF) algorithm to improve the algorithmic accuracy and diversity. In the improved CF algorithm, the user similarity is defined by the mass diffusion process, and we argue that the object clustering C4 of the bipartite network should be considered to improve the user similarity measurement. The statistical result shows that the clustering coefficient of the MovieLens data approximately has Poisson distribution. By considering the clustering effects of object nodes, the numerical simulation on a benchmark data set shows that the accuracy of the improved algorithm, measured by the average ranking score and precision, could be improved 15.3 and 13.0%, respectively, in the optimal case. In addition, numerical results show that the improved algorithm can provide more diverse recommendation results, for example, when the recommendation list contains 20 objects, the diversity, measured by the hamming distance, is improved by 28.7%. Since all of the real recommendation data are evolving with time, this work may shed some light on the adaptive recommendation algorithm according to the statistical properties of the user-object bipartite network.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Empirical analysis of the user reputation and clustering property for user-object bipartite networks;International Journal of Modern Physics C;2019-05

2. Effects of the bipartite structure of a network on performance of recommenders;Physica A: Statistical Mechanics and its Applications;2018-02

3. Roles of clustering properties for degree-mixing pattern networks;International Journal of Modern Physics C;2017-03

4. Web document ranking via active learning and kernel principal component analysis;International Journal of Modern Physics C;2015-02-25

5. EMPIRICAL ANALYSIS OF THE CLUSTERING COEFFICIENT IN THE USER-OBJECT BIPARTITE NETWORKS;International Journal of Modern Physics C;2013-07-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3