EMPIRICAL ANALYSIS OF THE CLUSTERING COEFFICIENT IN THE USER-OBJECT BIPARTITE NETWORKS

Author:

LIU JIANGUO1,HOU LEI1,ZHANG YI-LU1,SONG WEN-JUN1,PAN XUE1

Affiliation:

1. Research Center of Complex Systems Science, University of Shanghai for Science and Tecnology, Shanghai 200093, P. R. China

Abstract

The clustering coefficient of the bipartite network, C4, has been widely used to investigate the statistical properties of the user-object systems. In this paper, we empirically analyze the evolution patterns of C4 for a nine year MovieLens data set, where C4 is used to describe the diversity of the user interest. First, we divide the MovieLens data set into fractions according to the time intervals and calculate C4 of each fraction. The empirical results show that, the diversity of the user interest changes periodically with a round of one year, which reaches the smallest value in spring, then increases to the maximum value in autumn and begins to decrease in winter. Furthermore, a null model is proposed to compare with the empirical results, which is constructed in the following way. Each user selects each object with a turnable probability p, and the numbers of users and objects are equal to that of the real MovieLens data set. The comparison result indicates that the user activity has greatly influenced the structure of the user-object bipartite network, and users with the same degree information may have two totally different clustering coefficients. On the other hand, the same clustering coefficient also corresponds to different degrees. Therefore, we need to take the clustering coefficient into consideration together with the degree information when describing the user selection activity.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3