Empirical analysis of the user reputation and clustering property for user-object bipartite networks

Author:

Liu Xiao-Lu12,Jia Shu-Wei3,Gu Yan12

Affiliation:

1. Fanhai International School of Finance, Fudan University, Shanghai 200433, P. R. China

2. School of Economics, Fudan University, Shanghai 200433, P. R. China

3. College of Information and Management Science, Henan Agricultural University, Zhengzhou 450002, P. R. China

Abstract

User reputation is of great significance for online rating systems which can be described by user-object bipartite networks, measuring the user ability of rating accurate assessments of various objects. The clustering coefficients have been widely investigated to analyze the local structural properties of complex networks, analyzing the diversity of user interest. In this paper, we empirically analyze the relation of user reputation and clustering property for the user-object bipartite networks. Grouping by user reputation, the results for the MovieLens dataset show that both the average clustering coefficient and the standard deviation of clustering coefficient decrease with the user reputation, which are different from the results that the average clustering coefficient and the standard deviation of clustering coefficient remain stable regardless of user reputation in the null model, suggesting that the user interest tends to be multiple and the diversity of the user interests is centralized for users with high reputation. Furthermore, we divide users into seven groups according to the user degree and investigate the heterogeneity of rating behavior patterns. The results show that the relation of user reputation and clustering coefficient is obvious for small degree users and weak for large degree users, reflecting an important connection between user degree and collective rating behavior patterns. This work provides a further understanding on the intrinsic association between user collective behaviors and user reputation.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Computer Science Applications,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3