A SAT-Based Methodology for Effective Clock Gating for Power Minimization

Author:

Chandrakar Khushbu1,Roy Suchismita1

Affiliation:

1. Department of Computer Science and Engineering, National Institute of Technology, Durgapur, WB 713209, India

Abstract

A possible solution to handle the rising complexity of modern Systems-on-Chip (SoCs) is to raise the level of abstraction for the design and optimization. A better optimization of performance and power can be achieved at higher abstraction levels by applying suitable optimization techniques. Insertion of clock gating logic into the generated Register-Transfer Level (RTL) would facilitate lowering dynamic power consumption by switching off the clock signal to portions of the circuit not currently in use and thereby reducing unnecessary toggling. In this work, we have tried to minimize the power consumption of synchronous circuits by reducing the number of activity string patterns. Activity-driven clock trees have been used wherein sections of the clock tree are turned off by gating the clock signals. Since gating the clock signal implies additional control signals and gates, there is always a trade-off existing between the logic circuit area overhead and the total power consumption of the clock tree. A pseudo-Boolean satisfiability (PB-SAT)-based approach is proposed in this work which focuses on the reduction of power consumption by reducing the activity pattern of the clock tree which will reduce the power consumption with appropriate module-binding solutions.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3