EVOLUTION OF FRACTAL DIMENSIONS AND GAS TRANSPORT MODELS DURING THE GAS RECOVERY PROCESS FROM A FRACTURED SHALE RESERVOIR

Author:

HU BOWEN1,WANG J. G.12ORCID,LI ZHONGQIAN1,WANG HUIMIN2

Affiliation:

1. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, P. R. China

2. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, P. R. China

Abstract

Previous studies ignore the evolutions of pore microstructure parameters (pore diameter fractal dimension [Formula: see text] and tortuosity fractal dimension [Formula: see text]) but these evolutions may significantly impact the gas transport during gas extraction. In order to investigate these evolutions of fractal dimension properties during gas extraction, following four aspects are studied. Firstly, surface diffusion in adsorbed multilayer is modeled for fractal shale matrix. Our new matrix permeability model considers the slip flow, Knudsen diffusion and surface diffusion. This model is verified by experimental data. Secondly, a new fracture permeability model is proposed based on fractal theory and the coupling of viscous flow and Knudsen diffusion. Thirdly, the multilayer adsorption and these permeability models are introduced into the equations of gas flow and reservoir deformation. Finally, sensitivity analysis is performed to determine the key factors on fractal dimension evolution. The results show that the multilayer adsorption can accurately describe the adsorption properties of real shale reservoir. Shale reservoir deformation and gas desorption govern the evolutions of fractal dimensions. The multilayer adsorption and adsorbed gas porosity [Formula: see text] play an important role in the evolutions of fractal dimensions during gas extraction. The monolayer saturated adsorption volume [Formula: see text] is the most sensitive parameter affecting the evolution of fractal dimensions. Therefore, the effects of gas adsorption on the evolution of fractal dimensions cannot be neglected in shale reservoirs.

Funder

Fundamental Research Funds for the Central Universities

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3