Nanopores and Apparent Permeability of Gas Flow in Mudrocks (Shales and Siltstone)

Author:

Javadpour F.1

Affiliation:

1. The University of Texas at Austin

Abstract

Abstract Gas-producing mudrock systems are playing an important role in the volatile energy industry in North America and will soon play an equally important role in Europe. Mudrocks are composed of very fine grained particles, and their pores are very small, at the scale of nanometers. Gas production from these strata is much greater than what is anticipated given their very low Darcy permeability. In this paper, images of nanopores obtained by Atomic Force Microscopy (AFM) are presented for the first time. Gas flow in nanopores cannot be described simply by the Darcy equation. Processes such as Knudsen diffusion and slip flow at the solid matrix separate gas flow behaviour from Darcy-type flow. We present a formulation for gas flow in the nanopores of mudrocks based on Knudsen diffusion and slip flow. By comparing this new gas flow formulation and Darcy flow for compressible gas, we introduce an apparent permeability term that includes the complexity of flow in nanopores, and it takes the form of the Darcy equation so that it can easily be implemented in reservoir simulators. Results show that the ratio of apparent permeability to Darcy permeability increases sharply as pore sizes reduce to smaller than 100 nm. Also, Knudsen diffusion's contributions to flow increase as pores become smaller. Unlike Darcy permeability, which is a characteristic of the rock only, permeation of gas in nanopores of mudrocks depends on rock, gas type and operating conditions. Introduction In general, very fine grained sediments (<62.5 µm) are collectively referred to as mudrocks, which show no fissility (paperlike parting) and are commonly classified as mudstones; those that show fissility are commonly classified as shales. The reader is referred to Folk(1), who developed a simple classification of mudrocks. The term mudrocks, rather than shales, for unconventional gas-producing strata is used in this paper to be in line with the scientific classification acceptable in the geosciences. The existence of nanopores in mudrocks has been revealed recently by ultra-high pressure mercury injection(2, 3) and back-scattered scanning electron microscopy(4). In this paper, for the first time we show nanopores and nanogrooves detected in mudrocks using atomic force microscopy (AFM)(5). Now that we are confident that such small pores exist in mudrocks, the challenge is to understand and develop governing equations to describe gas flow in these small pores. We present new formulations for gas flow that include some complexities that were ignored in developing the Darcy equation. At equilibrium, gas molecules are distributed throughout strata, as illustrated in Figure 1. Gas molecules occupy pores as compressed gas, cover the surface of the kerogen materials as adsorbed gas and disperse in the kerogen materials as dissolved gas. Drilling a well or inducing a fracture disturbs the equilibrium, and gas molecules start flowing toward the low pressure zone. First, the freely compressed gas in the pores is produced. Then, the gas molecules on the surface of the kerogen walls desorb and increase pore pressure(2). Gas desorption changes the concentration equilibrium between the bulk of the kerogen and its surface, as illustrated in Figure 1.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3