Fractal Analytical Solutions for Nonlinear Two-Phase Flow in Discontinuous Shale Gas Reservoir

Author:

Shang Xiaoji,Zhang ZhizhenORCID,Zhang Zetian,Wang J. G.ORCID,Zhou YuejinORCID,Yang Weihao

Abstract

The paths of a two-phase flow are usually non-linear and discontinuous in the production of shale gas development. To research the influence mechanism between shale gas and water, several integer two-phase flow models have been studied but few analytical solutions have been obtained on shale gas and water pressure. This study first developed a local fractional mathematical model for gas and water two-phase flow in shale gas production. The model thus created considers the effects of capillary pressure, the fractal dimension of the flow pipe, and the discontinuity of the flow path. Second, the local fractional traveling wave method and variational iteration method were applied to this model for the development of iterative analytical solutions. Both shale gas and water pressure were analytically derived. Third, the depressurization process of the shale gas and water was analyzed, and a parametric study was conducted to explore the impacts of fractional dimension, entry capillary pressure, and travel wave velocity on shale gas pressure. Finally, our conclusions are drawn, based on the results of these studies.

Funder

National Key R&D Program of China

Open Foundation of Key Laboratory of Deep Earth Science and Engineering

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3