Multi-Attention Residual Network for Image Super Resolution

Author:

Chang Qing1ORCID,Jia Xiaotian1ORCID,Lu Chenhao1,Ye Jian1

Affiliation:

1. College of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China

Abstract

Recently, many studies have shown that deep convolutional neural network can achieve superior performance in image super resolution (SR). The majority of current CNN-based SR methods tend to use deeper architecture to get excellent performance. However, with the growing depth and width of network, the hierarchical features from low-resolution (LR) images cannot be exploited effectively. On the other hand, most models lack the ability of discriminating different types of information and treating them equally, which results in limiting the representational capacity of the models. In this study, we propose the multi-attention residual network (MARN) to address these problems. Specifically, we propose a new multi-attention residual block (MARB), which is composed of attention mechanism and multi-scale residual network. At the beginning of each residual block, the channel importance of image features is adaptively recalibrated by attention mechanism. Then, we utilize convolutional kernels of different sizes to adaptively extract the multi-attention features on different scales. At the end of blocks, local multi-attention features fusion is applied to get more effective hierarchical features. After obtaining the outputs of each MARB, global hierarchical feature fusion jointly fuses all hierarchical features for reconstructing images. Our extensive experiments show that our model outperforms most of the state-of-the-art methods.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Two-Stage Three-Dimensional Attention Network for Lightweight Image Super-Resolution;International Journal of Pattern Recognition and Artificial Intelligence;2023-10

2. Super-Resolution Swin Transformer and Attention Network for Medical CT Imaging;BioMed Research International;2022-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3