Super-Resolution Swin Transformer and Attention Network for Medical CT Imaging

Author:

Hu Jianhua1,Zheng Shuzhao1,Wang Bo1,Luo Guixiang2,Huang WoQing1,Zhang Jun1ORCID

Affiliation:

1. Computer Engineering Technical College, Guangdong Polytechnic of Science and Technology, Zhuhai Guangdong, China

2. School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou Guangdong, China

Abstract

Computerized tomography (CT) is widely used for clinical screening and treatment planning. In this study, we aimed to reduce X-ray radiation and achieve high-quality CT imaging by using low-intensity X-rays because CT radiation is damaging to the human body. An innovative vision transformer for medical image super-resolution (SR) is applied to establish a high-definition image target. To achieve this, we proposed a method called swin transformer and attention network (STAN) that uses the swin transformer network, which employs an attention method to overcome the long-range dependency difficulties encountered in CNNs and RNNs to enhance and restore the quality of medical CT images. We adopted the peak signal-to-noise ratio for performance comparison with other mainstream SR reconstruction models used in medical CT imaging. Experimental results revealed that the proposed STAN model yields superior medical CT imaging results than the existing SR techniques based on CNNs. The proposed STAN model employs a self-attention mechanism to more effectively extract critical features and long-range information, hence enhancing the quality of medical CT image reconstruction.

Funder

Innovative Research Team in Universities of Guangdong Province of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Super-resolution techniques for biomedical applications and challenges;Biomedical Engineering Letters;2024-03-19

2. An AI-Based Low-Risk Lung Health Image Visualization Framework Using LR-ULDCT;Journal of Imaging Informatics in Medicine;2024-03-15

3. Medical image super-resolution for smart healthcare applications: A comprehensive survey;Information Fusion;2024-03

4. Residual Network for Image Compression Artifact Reduction;International Journal of Pattern Recognition and Artificial Intelligence;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3