A Two-Stage Three-Dimensional Attention Network for Lightweight Image Super-Resolution

Author:

Chen Lei12ORCID,Yang Yanjie1ORCID,Zhuang Xu2ORCID,Wang Jason2ORCID,Mao Qin34ORCID,Yue Hong5ORCID,Wei Xuekai1ORCID,Cheng Fei6ORCID,Zong Xuemei7ORCID,Zhou Mingliang1ORCID

Affiliation:

1. College of Computer Science, Chongqing University, Chongqing 400044, P. R. China

2. OPPO Inc., Chengdu 610000, P. R. China

3. School of Computer and Information Technology, Qiannan Normal University for Nationalities, Duyun 558000, P. R. China

4. Key Laboratory of Complex Systems and Intelligent Optimization of Guizhou Province, Duyun 558000, P. R. China

5. CICT Connected and Intelligent Technologies Co., Ltd., Chongqing 400044, P. R. China

6. School of Advanced Technology, Xi’an Jiaotong-Liverpool University, Suzhou 215000, P. R. China

7. Jiangsu XCMG Construction Machinery Research Institude Ltd., Xuzhou 221000, P. R. China

Abstract

In recent years, single image super-resolution (SISR) methods using convolutional neural networks (CNN) have achieved satisfactory performance. Nevertheless, the large model scale and the slow inference speed of these methods greatly limit the application scenarios. In this paper, we propose a two-stage three-dimensional attention network (ATTNet) for lightweight image super-resolution. First, we put forward the spatial feature encoder–decoder (SFE-D) with a spatial attention mechanism. Next, the channel transposed attention module (CTAM) with a channel self-attention mechanism is designed. Both the modules are used for fine feature extraction in the low-resolution stage. Finally, the content-based pixel recombination module (CPRM) is proposed to reconstruct the detailed content with a joint attention mechanism in the high-resolution stage. According to our experimental results, significant performance in terms of the quantitative metrics and the subjective visual quality can be achieved on average compared with the state-of-the-art lightweight SISR algorithms.

Funder

NSFC

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3