A Lockable Abnormal Electromagnetic Signal Joint Detection Algorithm

Author:

Lu Jiazhong1ORCID,Niu Weina2,Liu Xiaolei1,Hu Teng1,Zhang Xiaosong1

Affiliation:

1. Center for Cyber Security, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China

2. College of Cybersecurity, Sichuan University, Chengdu 610065, P. R. China

Abstract

With the development of computers and network technologies, network security has gradually become a global problem. Network security defenses need to be carried out not only on the Internet, but also on other communication media, such as electromagnetic signals. Existing electromagnetic signal communication is easily intercepted or infiltrated. In order to effectively detect the abnormal electromagnetic signal to find out the specific location, then classify it, it is necessary to study the way of communication. The existing electromagnetic signal detection accuracy is low and cannot be located. Considering the characteristics of different power sources in different locations, combined with spark streaming technology and machine learning classification technology, a joint platform for electromagnetic signal anomaly detection based on big data analysis is proposed. The electromagnetic signal is abnormally detected by feature comparison and small signal analysis, and the position and number between the signal sources are determined by three-point positioning and signal attenuation. The experimental results show that the method can detect abnormal electromagnetic signals and classify abnormal electromagnetic signals well, the accuracy rate can reach 95%, and the positioning accuracy can reach 89%.

Funder

the National Natural Science Foundation for "targeting complex network modeling and behavioral analysis of the research"

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Blind source separation of electromagnetic signals based on deep focusing U-Net;Journal of Intelligent & Fuzzy Systems;2023-11-04

2. Research on anomaly detection algorithm in complex electromagnetic environment;International Conference on Image, Signal Processing, and Pattern Recognition (ISPP 2022);2022-04-29

3. Research and Analysis of Electromagnetic Trojan Detection Based on Deep Learning;Security and Communication Networks;2020-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3