Affiliation:
1. School of Computer Engineering, Jimei University, Xiamen, Fujian, China
Abstract
The unintentional electromagnetic radiation of digital electronic devices during operation can cause information leakage and threaten the information security of the system. In order to explore the leakage level of important information, it is necessary to separate the electromagnetic leakage signal from the complex environmental electromagnetic wave, so the blind source separation technology is studied.Traditional blind source separation methods are mainly unsupervised learning methods, and their separation results are not as expected. In recent years, deep learning technology based on supervised learning has achieved good results in speech separation and other fields, indicating that it is a feasible method.In order to solve the problem of separating source signals from mixed electromagnetic radiation signals and reducing noise interference in electromagnetic safety detection. this paper proposes a Deep Focusing U-Net neural network, which makes the model pay more attention to the features at deeper layer. The network is applied to the blind separation of LCD electromagnetic leakage signals, and the good separation performance proves the effectiveness of this method.
Subject
Artificial Intelligence,General Engineering,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献