BEARING FAULT DETECTION USING VIRTUAL–BASED ICA ALGORITHM

Author:

MOGHADAM K. REZAEI1,ARIAEI A. MOHAJERIN1,KAHAEI M. H.1,POSHTAN J.1

Affiliation:

1. Signal & System Modeling Lab., School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract

This paper presents a new method for fault diagnosis in ball-bearings using a combination of the Independent Component Analysis (ICA) and the Wavelet Transform. In the ICA, the number of sensors should be equal to the number of independent sources. We introduce a new method to replace the second vibration signal required by the ICA by a virtual one in order to increase the accuracy of the diagnosing system and also to simplify the system hardware. Using real and simulated signals, it is shown that the proposed algorithm outperforms the HFD algorithm.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Blind source separation of electromagnetic signals based on deep focusing U-Net;Journal of Intelligent & Fuzzy Systems;2023-11-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3