Research and Analysis of Electromagnetic Trojan Detection Based on Deep Learning

Author:

Lu Jiazhong1,Liu Xiaolei2ORCID,Zhang Shibin1,Chang Yan1

Affiliation:

1. School of Cybersecurity, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China

2. Institute of Computer Application, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China

Abstract

The electromagnetic Trojan attack can break through the physical isolation to attack, and the leaked channel does not use the system network resources, which makes the traditional firewall and other intrusion detection devices unable to effectively prevent. Based on the existing research results, this paper proposes an electromagnetic Trojan detection method based on deep learning, which makes the work of electromagnetic Trojan analysis more intelligent. First, the electromagnetic wave signal is captured using software-defined radio technology, and then the signal is initially filtered in combination with a white list, a demodulated signal, and a rate of change in intensity. Secondly, the signal in the frequency domain is divided into blocks in a time-window mode, and the electromagnetic signals are represented by features such as time, information amount, and energy. Finally, the serialized signal feature vector is further extracted using the LSTM algorithm to identify the electromagnetic Trojan. This experiment uses the electromagnetic Trojan data published by Gurion University to test. And it can effectively defend electromagnetic Trojans, improve the participation of computers in electromagnetic Trojan detection, and reduce the cost of manual testing.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Reference12 articles.

1. Information leakage via electromagnetic emanation and effectiveness of averaging technique;H. Tanaka

2. Soft Tempest: Hidden Data Transmission Using Electromagnetic Emanations

3. Electromagnetic circuit fingerprints for hardware trojan detection[C].;J. Balasch

4. Thermal Scans for Detecting Hardware Trojans

5. Ground Penetrating Radar Data Compression Acquisition Based on Perceptual Compression;W. C. Lu;Journal of Forestry Research,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3