Affiliation:
1. Mathematisches Institut, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
Abstract
A Dirac-type operator on a complete Riemannian manifold is of Callias-type if its square is a Schrödinger-type operator with a potential uniformly positive outside of a compact set. We develop the theory of Callias-type operators twisted with Hilbert [Formula: see text]-module bundles and prove an index theorem for such operators. As an application, we derive an obstruction to the existence of complete Riemannian metrics of positive scalar curvature on noncompact spin manifolds in terms of closed submanifolds of codimension one. In particular, when [Formula: see text] is a closed spin manifold, we show that if the cylinder [Formula: see text] carries a complete metric of positive scalar curvature, then the (complex) Rosenberg index on [Formula: see text] must vanish.
Publisher
World Scientific Pub Co Pte Lt
Subject
Geometry and Topology,Analysis
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献