Nonnegative scalar curvature on manifolds with at least two ends

Author:

Cecchini Simone12,Räde Daniel3,Zeidler Rudolf4

Affiliation:

1. Texas A&M University Texas USA

2. Mathematisches Institut University of Göttingen Augsburg Germany

3. Institut für Mathematik Augsburg University Augsburg Germany

4. Mathematisches Institut University of Münster Münster Germany

Abstract

AbstractLet be an orientable connected ‐dimensional manifold with and let be a two‐sided closed connected incompressible hypersurface that does not admit a metric of positive scalar curvature (abbreviated by psc). Moreover, suppose that the universal covers of and are either both spin or both nonspin. Using Gromov's ‐bubbles, we show that does not admit a complete metric of psc. We provide an example showing that the spin/nonspin hypothesis cannot be dropped from the statement of this result. This answers, up to dimension 7, a question by Gromov for a large class of cases. Furthermore, we prove a related result for submanifolds of codimension 2. We deduce as special cases that, if does not admit a metric of psc and , then does not carry a complete metric of psc and does not carry a complete metric of uniformly psc, provided that and , respectively. This solves, up to dimension 7, a conjecture due to Rosenberg and Stolz in the case of orientable manifolds.

Funder

Studienstiftung des Deutschen Volkes

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Geometry and Topology

Reference39 articles.

1. Callias-type operators in C∗-algebras and positive scalar curvature on noncompact manifolds

2. A long neck principle for Riemannian spin manifolds with positive scalar curvature

3. S.CecchiniandR.Zeidler Scalar and mean curvature comparison via the dirac operator Geom. Topol. to appear arXiv: 2103.06833 [math.DG].

4. S.CecchiniandR.Zeidler The positive mass theorem and distance estimates in the spin setting Trans. Amer. Math. Soc. to appear arXiv: 2108.11972 [math.DG].

5. J.Chen P.Liu Y.Shi andJ.Zhu Incompressible hypersurface positive scalar curvature and positive mass theorem arXiv: 2112.14442v1 [math.DG] 2021.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rigid comparison geometry for Riemannian bands and open incomplete manifolds;Mathematische Annalen;2024-09-05

2. Llarull type theorems on complete manifolds with positive scalar curvature;Transactions of the American Mathematical Society;2024-07-17

3. Rigidity and Non-Rigidity of $\mathbb{H}^n/\mathbb{Z}^{n-2}$ with Scalar Curvature Bounded from Below;Symmetry, Integrability and Geometry: Methods and Applications;2023-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3