A long neck principle for Riemannian spin manifolds with positive scalar curvature

Author:

Cecchini Simone

Abstract

AbstractWe develop index theory on compact Riemannian spin manifolds with boundary in the case when the topological information is encoded by bundles which are supported away from the boundary. As a first application, we establish a “long neck principle” for a compact Riemannian spin n-manifold with boundary X, stating that if $${{\,\mathrm{scal}\,}}(X)\ge n(n-1)$$ scal ( X ) n ( n - 1 ) and there is a nonzero degree map into the sphere $$f:X\rightarrow S^n$$ f : X S n which is strictly area decreasing, then the distance between the support of $$\text {d}f$$ d f and the boundary of X is at most $$\pi /n$$ π / n . This answers, in the spin setting and for strictly area decreasing maps, a question recently asked by Gromov. As a second application, we consider a Riemannian manifold X obtained by removing k pairwise disjoint embedded n-balls from a closed spin n-manifold Y. We show that if $${{\,\mathrm{scal}\,}}(X)>\sigma >0$$ scal ( X ) > σ > 0 and Y satisfies a certain condition expressed in terms of higher index theory, then the radius of a geodesic collar neighborhood of $$\partial X$$ X is at most $$\pi \sqrt{(n-1)/(n\sigma )}$$ π ( n - 1 ) / ( n σ ) . Finally, we consider the case of a Riemannian n-manifold V diffeomorphic to $$N\times [-1,1]$$ N × [ - 1 , 1 ] , with N a closed spin manifold with nonvanishing Rosenebrg index. In this case, we show that if $${{\,\mathrm{scal}\,}}(V)\ge \sigma >0$$ scal ( V ) σ > 0 , then the distance between the boundary components of V is at most $$2\pi \sqrt{(n-1)/(n\sigma )}$$ 2 π ( n - 1 ) / ( n σ ) . This last constant is sharp by an argument due to Gromov.

Funder

Georg-August-Universität Göttingen

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology,Analysis

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rigid comparison geometry for Riemannian bands and open incomplete manifolds;Mathematische Annalen;2024-09-05

2. Tilted spacetime positive mass theorem with arbitrary ends;Journal of Geometry and Physics;2024-09

3. Torsion Obstructions to Positive Scalar Curvature;Symmetry, Integrability and Geometry: Methods and Applications;2024-07-30

4. On the long neck principle and width estimates for initial data sets;Mathematische Zeitschrift;2024-06-21

5. Scalar and mean curvature comparison via the Dirac operator;Geometry & Topology;2024-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3