Decay of scalar curvature on uniformly contractible manifolds with finite asymptotic dimension

Author:

Wang Jinmin1,Xie Zhizhang2,Yu Guoliang2

Affiliation:

1. School of Mathematical Sciences Fudan University Shanghai China

2. Department of Mathematics Texas A&M University College Station Texas USA

Abstract

AbstractGromov proved a quadratic decay inequality of scalar curvature for a class of complete manifolds. In this paper, we prove that for any uniformly contractible manifold with finite asymptotic dimension, its scalar curvature decays to zero at a rate depending only on the contractibility radius of the manifold and the diameter control of the asymptotic dimension. We construct examples of uniformly contractible manifolds with finite asymptotic dimension whose scalar curvature functions decay arbitrarily slowly. This shows that our result is the best possible. We prove our result by studying the index pairing between Dirac operators and compactly supported vector bundles with Lipschitz control. A key technical ingredient for the proof of our main result is a Lipschitz control for the topological K‐theory of finite dimensional simplicial complexes.

Funder

National Natural Science Foundation of China

National Science Foundation

Publisher

Wiley

Subject

Applied Mathematics,General Mathematics

Reference38 articles.

1. A characterization for asymptotic dimension growth

2. Asymptotic dimension

3. Asymptotic dimension in Bedlewo;Bell G.;Topology Proc.,2011

4. Mathematical Sciences Research Institute Publications;Blackadar B.,1998

5. Callias-type operators in C∗-algebras and positive scalar curvature on noncompact manifolds

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3