Evaluating Stochastic Seeding Strategies in Networks

Author:

Chin Alex1ORCID,Eckles Dean23ORCID,Ugander Johan45ORCID

Affiliation:

1. Department of Statistics, Stanford University, Stanford, California 94305;

2. Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;

3. Institute for Data, Systems and Society, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;

4. Management Science and Engineering Department, Stanford University, Stanford, California 94305;

5. Institute for Computational and Mathematical Engineering, Stanford University, Stanford, California 94305

Abstract

When trying to maximize the adoption of a behavior in a population connected by a social network, it is common to strategize about where in the network to seed the behavior, often with an element of randomness. Selecting seeds uniformly at random is a basic but compelling strategy in that it distributes seeds broadly throughout the network. A more sophisticated stochastic strategy, one-hop targeting, is to select random network neighbors of random individuals; this exploits a version of the friendship paradox, whereby the friend of a random individual is expected to have more friends than a random individual, with the hope that seeding a behavior at more connected individuals leads to more adoption. Many seeding strategies have been proposed, but empirical evaluations have demanded large field experiments designed specifically for this purpose and have yielded relatively imprecise comparisons of strategies. Here we show how stochastic seeding strategies can be evaluated more efficiently in such experiments, how they can be evaluated “off-policy” using existing data arising from experiments designed for other purposes, and how to design more efficient experiments. In particular, we consider contrasts between stochastic seeding strategies and analyze nonparametric estimators adapted from policy evaluation and importance sampling. We use simulations on real networks to show that the proposed estimators and designs can substantially increase precision while yielding valid inference. We then apply our proposed estimators to two field experiments, one that assigned households to an intensive marketing intervention and one that assigned students to an antibullying intervention. This paper was accepted by Gui Liberali, Special Issue on Data-Driven Prescriptive Analytics.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Management Science and Operations Research,Strategy and Management

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3