Branch-and-Bound for Biobjective Mixed-Integer Linear Programming

Author:

Adelgren Nathan12ORCID,Gupte Akshay3ORCID

Affiliation:

1. Department of Mathematics and Computer Science, Edinboro University, Edinboro, Pennsylvania 16444

2. Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544

3. School of Mathematics, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom

Abstract

We present a generic branch-and-bound algorithm for finding all the Pareto solutions of a biobjective mixed-integer linear program. The main contributions are new algorithms for obtaining dual bounds at a node, checking node fathoming, presolve, and duality gap measurement. Our branch-and-bound is predominantly a decision space search method because the branching is performed on the decision variables, akin to single objective problems, although we also sometimes split gaps and branch in the objective space. The various algorithms are implemented using a data structure for storing Pareto sets. Computational experiments are carried out on literature instances and on a new set of instances that we generate using a benchmark library (MIPLIB2017) for single objective problems. We also perform comparisons against the triangle splitting method from literature, which is an objective space search algorithm. Summary of Contribution: Biobjective mixed-integer optimization problems have two linear objectives and a mixed-integer feasible region. Such problems have many applications in operations research, because many real-world optimization problems naturally comprise two conflicting objectives to optimize or can be approximated in such a manner and are even harder than single objective mixed-integer programs. Solving them exactly requires the computation of all the nondominated solutions in the objective space, whereas some applications may also require finding at least one solution in the decision space corresponding to each nondominated solution. This paper provides an exact algorithm for solving these problems using the branch-and-bound method, which works predominantly in the decision space. Of the many ingredients of this algorithm, some parts are direct extensions of the single-objective version, but the main parts are newly designed algorithms to handle the distinct challenges of optimizing over two objectives. The goal of this study is to improve solution quality and speed and show that decision-space algorithms perform comparably to, and sometimes better than, algorithms that work mainly in the objective-space.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3