An outer approximation algorithm for generating the Edgeworth–Pareto hull of multi-objective mixed-integer linear programming problems

Author:

Bökler FritzORCID,Parragh Sophie N.ORCID,Sinnl MarkusORCID,Tricoire FabienORCID

Abstract

AbstractIn this paper, we present an outer approximation algorithm for computing the Edgeworth–Pareto hull of multi-objective mixed-integer linear programming problems (MOMILPs). It produces the extreme points (i.e., the vertices) as well as the facets of the Edgeworth–Pareto hull. We note that these extreme points are the extreme supported non-dominated points of a MOMILP. We also show how to extend the concept of geometric duality for multi-objective linear programming problems to the Edgeworth–Pareto hull of MOMILPs and use this extension to develop the algorithm. The algorithm relies on a novel oracle that solves single-objective weighted-sum problems and we show that the required number of oracle calls is polynomial in the number of facets of the convex hull of the extreme supported non-dominated points in the case of MOMILPs. Thus, for MOMILPs for which the weighted-sum problem is solvable in polynomial time, the facets can be computed with incremental-polynomial delay—a result that was formerly only known for the computation of extreme supported non-dominated points. Our algorithm can be an attractive option to compute lower bound sets within multi-objective branch-and-bound algorithms for solving MOMILPs. This is for several reasons as (i) the algorithm starts from a trivial valid lower bound set then iteratively improves it, thus at any iteration of the algorithm a lower bound set is available; (ii) the algorithm also produces efficient solutions (i.e., solutions in the decision space); (iii) in any iteration of the algorithm, a relaxation of the MOMILP can be solved, and the obtained points and facets still provide a valid lower bound set. Moreover, for the special case of multi-objective linear programming problems, the algorithm solves the problem to global optimality. A computational study on a set of benchmark instances from the literature is provided.

Funder

Johannes Kepler University Linz

Publisher

Springer Science and Business Media LLC

Subject

Management Science and Operations Research,General Mathematics,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3