Remote-Sensing Satellite Mission Scheduling Optimisation Method under Dynamic Mission Priorities

Author:

Li Xiuhong1,Sun Chongxiang2,Fan Huilong2ORCID,Yang Jiale1

Affiliation:

1. College of Information Science and Engineering (School of Cyber Science and Engineering), Xinjiang University, Urumqi 830046, China

2. School of Computer Science and Engineering, Central South University, Changsha 410075, China

Abstract

Mission scheduling is an essential function of the management control of remote-sensing satellite application systems. With the continuous development of remote-sensing satellite applications, mission scheduling faces significant challenges. Existing work has many inherent shortcomings in dealing with dynamic task scheduling for remote-sensing satellites. In high-load and complex remote sensing task scenarios, there is low scheduling efficiency and a waste of resources. The paper proposes a scheduling method for remote-sensing satellite applications based on dynamic task prioritization. This paper combines the and Bound methodologies with an onboard task queue scheduling band in an active task prioritization context. A purpose-built emotional task priority-based scheduling blueprint is implemented to mitigate the flux and unpredictability characteristics inherent in the traditional satellite scheduling paradigm, improve scheduling efficiency, and fine-tune satellite resource allocation. Therefore, the Branch and Bound method in remote-sensing satellite task scheduling will significantly save space and improve efficiency. The experimental results show that comparing the technique to the three heuristic algorithms (GA, PSO, DE), the BnB method usually performs better in terms of the maximum value of the objective function, always finds a better solution, and reduces about 80% in terms of running time.

Funder

Research on Basic Theory and Key Technology of Discrete Intelligent Manufacturing Based on Industrial Big Data

Undertaking industrial application research on “Complex Network Behaviour Analysis, Prediction and Intervention in Multilingual Big Data Environment”

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3