Chance-Constrained Multiple Bin Packing Problem with an Application to Operating Room Planning

Author:

Wang Shanshan1ORCID,Li Jinlin1ORCID,Mehrotra Sanjay2ORCID

Affiliation:

1. Department of Management Science and Engineering, Beijing Institute of Technology, Beijing, China 100081;

2. Department of Industrial Engineering and Management Science, Northwestern University, Evanston, Illinois 60208

Abstract

We study the chance-constrained bin packing problem, with an application to hospital operating room planning. The bin packing problem allocates items of random sizes that follow a discrete distribution to a set of bins with limited capacity, while minimizing the total cost. The bin capacity constraints are satisfied with a given probability. We investigate a big-M and a 0-1 bilinear formulation of this problem. We analyze the bilinear structure of the formulation and use the lifting techniques to identify cover, clique, and projection inequalities to strengthen the formulation. We show that in certain cases these inequalities are facet-defining for a bilinear knapsack constraint that arises in the reformulation. An extensive computational study is conducted for the operating room planning problem that minimizes the number of open operating rooms. The computational tests are performed using problems generated based on real data from a hospital. A lower-bound improvement heuristic is combined with the cuts proposed in this paper in a branch-and-cut framework. The computations illustrate that the techniques developed in this paper can significantly improve the performance of the branch-and-cut method. Problems with up to 1,000 scenarios are solved to optimality in less than an hour. A safe approximation based on conditional value at risk (CVaR) is also solved. The computations show that the CVaR approximation typically leaves a gap of one operating room (e.g., six instead of five) to satisfy the chance constraint. Summary of Contribution: This paper investigates a branch-and-cut algorithm for a chance-constrained bin packing problem with multiple bins. The chance-constrained bin packing provides a modeling framework for applied operations research problems, such as health care, scheduling, and so on. This paper studies alternative computational approaches to solve this problem. Moreover, this paper uses real data from a hospital operating room planning setting as an application to test the algorithmic ideas. This work, therefore, is at the intersection of computing and operations research. Several interesting ideas are developed and studied. These include a strengthened big-M reformulation, analysis of a bilinear reformulation, and identifying certain facet-defining inequalities for this formulation. This paper also gives a lower-bound generation heuristic for a model that minimizes the number of bins. Computational experiments for an operating room planning model that uses data from a hospital demonstrate the computational improvement and importance of the proposed approaches. The techniques proposed in this paper and computational experiments further enhance the interface of computing and operations research.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3