The Terminator: An Integration of Inner and Outer Approximations for Solving Wasserstein Distributionally Robust Chance Constrained Programs via Variable Fixing

Author:

Jiang Nan1ORCID,Xie Weijun1ORCID

Affiliation:

1. H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332

Abstract

We present a novel approach aimed at enhancing the efficacy of solving both regular and distributionally robust chance constrained programs using an empirical reference distribution. In general, these programs can be reformulated as mixed-integer programs (MIPs) by introducing binary variables for each scenario, indicating whether a scenario should be satisfied. Whereas existing methods have focused predominantly on either inner or outer approximations, this paper bridges this gap by studying a scheme that effectively combines these approximations via variable fixing. By checking the restricted outer approximations and comparing them with the inner approximations, we derive optimality cuts that can notably reduce the number of binary variables by effectively setting them to either one or zero. We conduct a theoretical analysis of variable fixing techniques, deriving an asymptotic closed-form expression. This expression quantifies the proportion of binary variables that should be optimally fixed to zero. Our empirical results showcase the advantages of our approach in terms of both computational efficiency and solution quality. Notably, we solve all the tested instances from literature to optimality, signifying the robustness and effectiveness of our proposed approach. History: Accepted by Andrea Lodi/Design & Analysis of Algorithms — Discrete. Funding: This work was supported by Office of Naval Research [N00014-24-1-2066]; Division of Civil, Mechanical and Manufacturing Innovation [2246414]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0299 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0299 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3