Distinguishing Homophily from Peer Influence Through Network Representation Learning

Author:

Chen Xi12,Liu Yan1,Zhang Cheng3ORCID

Affiliation:

1. Data Science and Engineering Management, School of Management, Zhejiang University, Hangzhou 310058, China;

2. Center for Research on Zhejiang Digital Development and Governance, Hangzhou 310058, China;

3. Department of Information Management and Business Intelligence, School of Management, Fudan University, Shanghai 200433, China

Abstract

Peer influence and homophily are two entangled forces underlying social influences. However, distinguishing homophily from peer influence is difficult, particularly when there is latent homophily caused by unobservable features. This paper proposes a novel data-driven framework that combines the advantages of latent homophily identification and causal inference. Specifically, the approach first utilizes scalable network representation learning algorithms to obtain node embeddings, which are extracted from social network structures. Then, the embeddings are used to control latent homophily in a quasi-experimental design for causal inference. The simulation experiments show that the proposed approach can estimate peer influence more accurately than existing parameterized approaches and data-driven methods. We applied the proposed framework in an empirical study of players’ online gaming behaviors. First, our approach can achieve improved model fitness for estimating peer influence in online games. Second, we discover a heterogeneous effect of peer influence: players with higher tenure and playing levels receive stronger peer influence. Finally, our results suggest that the homophily effect has a stronger influence on players’ behavior than peer influence. Summary of Contribution: The study proposes a novel computational method to separate peer influence from homophily in an online network. Using network embeddings learned from data to control latent homophily, the approach effectively addresses the challenge of correctly identifying peer effects in the absence of randomized experimental conditions. While simplifying the computational process, the method achieves good computational performance, thus effectively helping researchers and practitioners extract useful network information in various online service contexts.

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3