Controlling Homophily in Social Network Regression Analysis by Machine Learning

Author:

Liu Xuanqi1ORCID,Huang Ke-Wei2ORCID

Affiliation:

1. Department of Information Management and E-Commerce, Business School, Hunan University, Changsha 410012, China;

2. Department of Information Systems and Analytics, School of Computing, National University of Singapore, Singapore 117417

Abstract

Across social science disciplines, empirical studies related to social networks have become the most popular research subjects in recent years. A frequently examined topic within these studies is the estimation of peer influence while controlling for homophily effects. However, although researchers may have access to all observable homophily variables, there is scarce literature addressing latent homophily effects stemming from unobservable features. Recent endeavors have demonstrated the efficacy of node embeddings derived from network structure in controlling latent homophily. Inspired by the network embedding research, this study introduces two methods that integrate node embeddings to better control latent homophily, particularly the nonlinear latent homophily effect. The first method uses double machine learning in the partially linear regression literature to alleviate estimation bias. The second method estimates peer influence effects directly by a novel neural network model. Our experimentation results show that our approaches outperform existing estimators in reducing the omitted variable bias due to homophily effects in network regression models. Theoretical analysis of two new estimation methods is also provided in this paper. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: This research is supported by the National Research Foundation, Singapore under its Industry Alignment Fund - Pre-positioning (IAF-PP) Funding Initiative [Grant A-0003504-02-00]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0287 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0287 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3