Rethinking the residual approach: Leveraging machine learning to operationalize cognitive resilience in Alzheimer’s disease

Author:

Birkenbihl ColinORCID,Cuppels Madison,Boyle Rory T.ORCID,Klinger Hannah M.,Langford Oliver,Coughlan Gillian T.ORCID,Properzi Michael J.,Chhatwal Jasmeer,Price Julie T.,Schultz Aaron P.,Rentz Dorene M.,Amariglio Rebecca E.,Johnson Keith A.,Gottesman Rebecca F.,Mukherjee Shubhabrata,Maruff Paul,Lim Yen Ying,Masters Colin L.,Beiser Alexa,Resnick Susan M.,Hughes Timothy M.,Burnham Samantha,Tunali Ilke,Landau Susan,Cohen Ann D.,Johnson Sterling C.,Betthauser Tobey J.ORCID,Seshadri Sudha,Lockhart Samuel N.,O’Bryant Sid E.,Vemuri Prashanthi,Sperling Reisa A.,Hohman Timothy J.,Donohue Michael C.,Buckley Rachel F.ORCID

Abstract

AbstractCognitive resilience describes the phenomenon of individuals evading cognitive decline despite prominent Alzheimer’s disease neuropathology. Operationalization and measurement of this latent construct is non-trivial as it cannot be directly observed. The residual approach has been widely applied to estimate CR, where the degree of resilience is estimated through a linear model’s residuals. We demonstrate that this approach makes specific, uncontrollable assumptions and likely leads to biased and erroneous resilience estimates. We propose an alternative strategy which overcomes the standard approach’s limitations using machine learning principles. Our proposed approach makes fewer assumptions about the data and construct to be measured and achieves better estimation accuracy on simulated ground-truth data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3