Predicting progression and cognitive decline in amyloid-positive patients with Alzheimer’s disease

Author:

Dansson Hákon Valur,Stempfle LenaORCID,Egilsdóttir Hildur,Schliep Alexander,Portelius Erik,Blennow Kaj,Zetterberg Henrik,Johansson Fredrik D.,

Abstract

Abstract Background In Alzheimer’s disease, amyloid- β (A β) peptides aggregate in the lowering CSF amyloid levels - a key pathological hallmark of the disease. However, lowered CSF amyloid levels may also be present in cognitively unimpaired elderly individuals. Therefore, it is of great value to explain the variance in disease progression among patients with A β pathology. Methods A cohort of n=2293 participants, of whom n=749 were A β positive, was selected from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database to study heterogeneity in disease progression for individuals with A β pathology. The analysis used baseline clinical variables including demographics, genetic markers, and neuropsychological data to predict how the cognitive ability and AD diagnosis of subjects progressed using statistical models and machine learning. Due to the relatively low prevalence of A β pathology, models fit only to A β-positive subjects were compared to models fit to an extended cohort including subjects without established A β pathology, adjusting for covariate differences between the cohorts. Results A β pathology status was determined based on the A β42/A β40 ratio. The best predictive model of change in cognitive test scores for A β-positive subjects at the 2-year follow-up achieved an R2 score of 0.388 while the best model predicting adverse changes in diagnosis achieved a weighted F1 score of 0.791. A β-positive subjects declined faster on average than those without A β pathology, but the specific level of CSF A β was not predictive of progression rate. When predicting cognitive score change 4 years after baseline, the best model achieved an R2 score of 0.325 and it was found that fitting models to the extended cohort improved performance. Moreover, using all clinical variables outperformed the best model based only on a suite of cognitive test scores which achieved an R2 score of 0.228. Conclusion Our analysis shows that CSF levels of A β are not strong predictors of the rate of cognitive decline in A β-positive subjects when adjusting for other variables. Baseline assessments of cognitive function accounts for the majority of variance explained in the prediction of 2-year decline but is insufficient for achieving optimal results in longer-term predictions. Predicting changes both in cognitive test scores and in diagnosis provides multiple perspectives of the progression of potential AD subjects.

Funder

Vetenskapsrådet

Alzheimer's Drug Discovery Foundation

Swedish Alzheimer's Association

Hj\"{a}rnfonden

Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement

EU Joint Programme - Neurodegenerative Disease Research

European Research Council

Swedish State Support for Clinical Research

AD Strategic Fund and the Alzheimer's Association

Familjen Erling-Perssons Stiftelse

Olav Thon Foundation

European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement

UK Dementia Research Institute at UCL

Knut och Alice Wallenbergs Stiftelse

Chalmers Tekniska H\"{o}gskola

Chalmers University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience,Clinical Neurology,Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3