Abstract
AbstractDementia probably due to Alzheimer’s disease (AD) is a progressive condition that manifests in cognitive decline and impairs patients’ daily life. Affected patients show great heterogeneity in their symptomatic progression, which hampers the identification of efficacious treatments in clinical trials. Using artificial intelligence approaches to enable clinical enrichment trials serves a promising avenue to identify treatments.In this work, we used a deep learning method to cluster the multivariate disease trajectories of 283 early dementia patients along cognitive and functional scores. Two distinct subgroups were identified that separated patients into ‘slow’ and ‘fast’ progressing individuals. These subgroups were externally validated and independently replicated in a dementia cohort comprising 2779 patients. We trained a machine learning model to predict the progression subgroup of a patient from cross-sectional data at their time of dementia diagnosis. The classifier achieved a prediction performance of 0.70 ± 0.01 AUC in external validation.By emulating a hypothetical clinical trial conducting patient enrichment using the proposed classifier, we estimate its potential to decrease the required sample size. Furthermore, we balance the achieved enrichment of the trial cohort against the accompanied demand for increased patient screening. Our results show that enrichment trials targeting cognitive outcomes offer improved chances of trial success and are more than 13% cheaper compared to conventional clinical trials. The resources saved could be redirected to accelerate drug development and expand the search for remedies for cognitive impairment.
Publisher
Cold Spring Harbor Laboratory
Reference30 articles.
1. 2019 Alzheimer’s disease facts and figures;Alzheimer’s Association;Alzheimers Dement,2019
2. Two Randomized Phase 3 Studies of Aducanumab in Early Alzheimer’s Disease;J. Prev. Alzheimers Dis,2022
3. Donanemab in Early Symptomatic Alzheimer Disease
4. Alzheimer’s Disease: Key Insights from Two Decades of Clinical Trial Failures;J. Alzheimers Dis,2022
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献