QSM Reconstruction Challenge 2.0: a realistic in silico head phantom for MRI data simulation and evaluation of susceptibility mapping procedures

Author:

Marques José P.,Meineke Jakob,Milovic Carlos,Bilgic Berkin,Chan Kwok-ShingORCID,Hedouin Renaud,van der Zwaag Wietske,Langkammer Christian,Schweser Ferdinand

Abstract

AbstractPurposeTo create a realistic in-silico head phantom for the second Quantitative Susceptibility Mapping (QSM) Reconstruction Challenge and for future evaluations of processing algorithms for QSM.MethodsWe created a digital whole-head tissue property phantom by segmenting and post-processing high-resolution (0.64mm isotropic), multi-parametric MRI data acquired at 7T from a healthy volunteer. We simulated the steady-state magnetization at 7T using a Bloch simulator and mimicked a Cartesian sampling scheme through Fourier-based processing. Computer code for generating the phantom and performing the MR simulation was designed to facilitate flexible modifications of the phantom in the future, such as the inclusion of pathologies, as well as the simulation of a wide range of acquisition protocols. Specifically, the following parameters and effects were implemented: repetition time and echo time, voxel size, background fields, and RF phase biases. Diffusion weighted imaging phantom data is provided allowing future investigations of tissue microstructure effects in phase and QSM algorithms.ResultsThe brain-part of the phantom featured realistic morphology with spatial variations in relaxation and susceptibility values similar to the in vivo setting. We demonstrated some of the phantom’s properties, including the possibility of generating phase data with non-linear evolution over echo time due to partial volume effects or complex distributions of frequency shifts within the voxel.ConclusionThe presented phantom and computer programs are publicly available and may serve as a ground truth in future assessments of the faithfulness of quantitative susceptibility reconstruction algorithms.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3