QSMxT: Robust Masking and Artefact Reduction for Quantitative Susceptibility Mapping

Author:

Stewart Ashley Wilton,Robinson Simon Daniel,O’Brien Kieran,Jin Jin,Widhalm Georg,Hangel Gilbert,Walls Angela,Goodwin Jonathan,Eckstein Korbinian,Tourell Monique,Morgan Catherine,Narayanan Aswin,Barth Markus,Bollmann Steffen

Abstract

AbstractPurposeQuantitative Susceptibility Mapping (QSM) is a post-processing technique applied to gradient-echo phase data. QSM algorithms require a signal mask to delineate regions with reliable phase signal for subsequent susceptibility estimation. Existing masking techniques used in QSM have limitations that introduce artefacts, exclude anatomical detail, and rely on parameter tuning and anatomical priors that narrow their application. Here, a robust masking and reconstruction procedure is presented to overcome these limitations and enable automated QSM processing for a wide range of use-cases implemented in an open-source software framework: QSMxT.MethodsA robust masking technique that automatically separates reliable from less reliable phase regions was developed and combined with a two-pass reconstruction procedure that operates on the separated sources before combination, extracting more information while reducing the influence of artefacts.ResultCompared with standard masking and reconstruction procedures, the two-pass inversion reduces streaking artefacts caused by unreliable phase and high dynamic ranges of susceptibility sources. QSMxT is robust across a range of datasets at 3 T in healthy volunteers and phantoms, at 7 T in tumour patients, and in the QSM challenge 2.0 simulated brain dataset, with significant artefact and error reductions, greater anatomical detail, and minimal parameter tuning.ConclusionQSMxT generates masks for QSM that separate reliable from less reliable phase regions, enables a more accurate QSM reconstruction that mitigates artefacts, operates without anatomical priors, and requires minimal parameter tuning. QSMxT makes QSM processing more accessible, reliable and reproducible.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3