QSM Reconstruction Challenge 2.0: Design and Report of Results

Author:

Bilgic Berkin,Langkammer Christian,Marques José P.,Meineke Jakob,Milovic Carlos,Schweser Ferdinand

Abstract

AbstractPurposeThe aim of the second quantitative susceptibility mapping (QSM) reconstruction challenge (Oct 2019, Seoul, Korea) was to test the accuracy of QSM dipole inversion algorithms in simulated brain data.MethodsA two-stage design was chosen for this challenge. The participants were provided with datasets of multi-echo gradient echo images synthesized from two realisticin silicohead phantoms using an MR simulator. At the first stage, participants optimized QSM reconstructions without ground-truths available to mimic the clinical setting. At the second stage, ground-truths were provided for parameter optimization.Submissions were evaluated using eight numerical metrics and visual ratings.ResultsA total of 98 reconstructions were submitted for stage 1 and 47 submissions for stage 2. Iterative methods had the best quantitative metric scores, followed by deep-learning and direct inversion methods. Priors derived from magnitude data improved the metric scores. Algorithms based on iterative approaches and Total Variation (and its derivatives) produced the best overall results. The reported results and analysis pipelines have been made public to allow researchers to compare new methods to the current state of the art.ConclusionThe synthetic data provides a consistent framework to test the accuracy and robustness of QSM algorithms in the presence of noise, calcifications and minor voxel dephasing effects. Total Variation-based algorithmsproduced the best results along all metrics. Future QSM challenges should asses if this good performance with synthetic datasets translates to more realistic scenarios, where background fields and dipole-incompatible phase contributions are included.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3