The geometry of hidden representations of protein language models

Author:

Valeriani Lucrezia,Cuturello Francesca,Ansuini AlessioORCID,Cazzaniga AlbertoORCID

Abstract

AbstractProtein language models (pLMs) transform their input into a sequence of hidden representations whose geometric behavior changes across layers. Looking at fundamental geometric properties such as the intrinsic dimension and the neighbor composition of these representations, we observe that these changes highlight a pattern characterized by three distinct phases. This phenomenon emerges across many models trained on diverse datasets, thus revealing a general computational strategy learned by pLMs to reconstruct missing parts of the data. These analyses show the existence of low-dimensional maps that encode evolutionary and biological properties such as remote homology and structural information. Our geometric approach sets the foundations for future systematic attempts to understand thespaceof protein sequences with representation learning techniques.

Publisher

Cold Spring Harbor Laboratory

Reference26 articles.

1. Mohammed AlQuraishi . ProteinNet: a standardized data set for machine learning of protein structure. BMC Bioinformatics, 20, 2019.

2. Alessio Ansuini , Alessandro Laio , Jakob H Macke , and Davide Zoccolan . Intrinsic dimension of data representations in deep neural networks. Advances in Neural Information Processing Systems, 32, 2019.

3. SCOPe: improvements to the structural classification of proteins – extended database to facilitate variant interpretation and machine learning

4. N.S. Detlefsen , S. Hauberg , and W. Boomsma . Learning meaningful representations of protein sequences. Nature Communications, 13, 2022.

5. Bert: Pre-training of deep bidirectional transformers for language understanding;Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3