Fine-tuning protein language models boosts predictions across diverse tasks

Author:

Schmirler Robert,Heinzinger MichaelORCID,Rost BurkhardORCID

Abstract

ABSTRACTPrediction methods inputting embeddings from protein Language Models (pLMs) have reached or even surpassed state-of-the-art (SOTA) performance on many protein prediction tasks. In natural language processing (NLP) fine-tuning Language Models has become thede factostandard. In contrast, most pLM-based protein predictions do not back-propagate to the pLM. Here, we compared the fine-tuning of three SOTA pLMs (ESM2, ProtT5, Ankh) on eight different tasks. Two results stood out. Firstly, task-specific supervised fine-tuning almost always improved downstream predictions. Secondly, parameter-efficient fine-tuning could reach similar improvements consuming substantially fewer resources. Put simply: always fine-tune pLMs and you will mostly gain. To help you, we provided easy-to-use notebooks for parameter efficient fine-tuning of ProtT5 for per-protein (pooling) and per-residue prediction tasks athttps://github.com/agemagician/ProtTrans/tree/master/Fine-Tuning.

Publisher

Cold Spring Harbor Laboratory

Reference68 articles.

1. Vaswani, A. et al. Attention is all you need. Adv. neural information processing systems 30 (2017).

2. OpenAI. Gpt-4 technical report. Preprint at https://arxiv.org/abs/2303.08774 (2023).

3. Anil, R. et al. Palm 2 technical report. Preprint at https://arxiv.org/abs/2305.10403 (2023).

4. Bubeck, S. et al. Sparks of artificial general intelligence: Early experiments with gpt-4. Preprint at https://arxiv.org/abs/2303.12712 (2023).

5. Liu, Z. et al. Swin transformer: Hierarchical vision transformer using shifted windows. Proc. IEEE/CVF international conference on computer vision 10012–10022 (2021).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3