Fine-tuning of conditional Transformers for the generation of functionally characterized enzymes

Author:

Nicolini MarcoORCID,Saitto EmanueleORCID,Jimenez Franco Ruben EmilioORCID,Cavalleri EmanueleORCID,Mesiti MarcoORCID,Galeano Alfonso Aldo Javier,Malchiodi DarioORCID,Paccanaro AlbertoORCID,Robinson Peter N.ORCID,Casiraghi ElenaORCID,Valentini GiorgioORCID

Abstract

AbstractWe introduceFinenzyme, a Protein Language Model (PLM) that employs a multifaceted learning strategy based on transfer learning from a decoder-based Transformer, conditional learning using specific functional keywords, and fine-tuning to model specific Enzyme Commission (EC) categories. UsingFinenzyme, we investigate the conditions under which fine-tuning enhances the prediction and generation of EC categories, showing a two-fold perplexity improvement in EC-specific categories compared to a generalist model. Our extensive experimentation shows thatFinenzymegenerated sequences can be very different from natural ones while retaining similar tertiary structures, functions and chemical kinetics of their natural counterparts. Importantly, the embedded representations of the generated enzymes closely resemble those of natural ones, thus making them suitable for downstream tasks. Finally, we illustrate howFinenzymecan be used in practice to generate enzymes characterized by specific functions using in-silico directed evolution, a computationally inexpensive PLM fine-tuning procedure significantly enhancing and assisting targeted enzyme engineering tasks.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3