SCOPe: improvements to the structural classification of proteins – extended database to facilitate variant interpretation and machine learning

Author:

Chandonia John-Marc123ORCID,Guan Lindsey3ORCID,Lin Shiangyi4ORCID,Yu Changhua3ORCID,Fox Naomi K12ORCID,Brenner Steven E134ORCID

Affiliation:

1. Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

2. Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

3. Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA

4. College of Engineering, University of California, Berkeley, CA 94720, USA

Abstract

Abstract The Structural Classification of Proteins—extended (SCOPe, https://scop.berkeley.edu) knowledgebase aims to provide an accurate, detailed, and comprehensive description of the structural and evolutionary relationships amongst the majority of proteins of known structure, along with resources for analyzing the protein structures and their sequences. Structures from the PDB are divided into domains and classified using a combination of manual curation and highly precise automated methods. In the current release of SCOPe, 2.08, we have developed search and display tools for analysis of genetic variants we mapped to structures classified in SCOPe. In order to improve the utility of SCOPe to automated methods such as deep learning classifiers that rely on multiple alignment of sequences of homologous proteins, we have introduced new machine-parseable annotations that indicate aberrant structures as well as domains that are distinguished by a smaller repeat unit. We also classified structures from 74 of the largest Pfam families not previously classified in SCOPe, and we improved our algorithm to remove N- and C-terminal cloning, expression and purification sequences from SCOPe domains. SCOPe 2.08-stable classifies 106 976 PDB entries (about 60% of PDB entries).

Funder

National Institutes of Health

U.S. Department of Energy

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3