Abstract
AbstractWest Nile virus (WNV) is the most widespread arthropod-borne (arbo) virus and the primary cause of arboviral encephalitis globally. Members of WNV species genetically diverged and are classified into different hierarchical groups below species rank. However, the demarcation criteria for allocating WNV sequences into these groups remain individual, inconsistent, and the use of names for different levels of the hierarchical levels is unstructured. In order to have an objective and comprehensible grouping of WNV sequences, we developed an advanced grouping workflow using the “affinity propagation clustering”-algorithm and newly included the “agglomerative hierarchical clustering”-algorithm for the allocation of WNV sequences into different groups below species rank. In addition, we propose to use a fixed set of terms for the hierarchical naming of WNV below species level and a clear decimal numbering system to label the determined groups. For validation, we applied the refined workflow to WNV sequences that have been previously grouped into various lineages, clades, and clusters in other studies. Although our workflow regrouped some WNV sequences, overall, it generally corresponds with previous groupings. We employed our novel approach to the sequences from the WNV circulation in Germany 2020, primarily from WNV-infected birds and horses. Besides two newly defined minor (sub)clusters comprising only of three sequences each, subcluster 2.5.3.4.3c was the predominant WNV sequence group detected in Germany from 2018-20. This predominant subcluster was also associated with at least five human WNV-infections in 2019-20. In summary, our analyses imply that the genetic diversity of the WNV population in Germany is shaped by enzootic maintenance of the dominant WNV subcluster accompanied by sporadic incursions of other rare clusters and subclusters. Moreover, we show that our refined approach for sequence grouping yields meaningful results. Although we primarily aimed at a more detailed WNV classification, the presented workflow can also be applied to the objective genotyping of other virus species.
Publisher
Cold Spring Harbor Laboratory
Reference86 articles.
1. Increase in human West Nile and Usutu virus infections, Austria, 2018;Eurosurveillance,2018
2. Aguilera-Sepulveda, P. , et al. (2021), ‘A new cluster of West Nile virus lineage 1 isolated from a northern goshawk in Spain’, Transboundary and Emergerging Disease.
3. West Nile Virus Lineage 2 Spreads Westwards in Europe and Overwinters in North-Eastern Spain (2017-2020);Viruses-Basel,2022
4. Evolutionary dynamics of West Nile virus in the United States, 1999-2011: phylogeny, selection pressure and evolutionary time-scale analysis;PLoS Neglected Tropical Diseases,2013
5. Bakran-Lebl, K. , et al. (2021), ‘Diversity of West Nile and Usutu virus strains in mosquitoes at an international airport in Austria’, Transboundary and Emerging Diseases, 1-14.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献