Unraveling the phylogenetic signal of gene expression from single-cell RNA-seq data

Author:

Alves Joao MORCID,Tomás LauraORCID,Posada DavidORCID

Abstract

AbstractSingle-cell RNA sequencing (scRNA-seq) has transformed our understanding of phenotypic heterogeneity. Although the predominant focus of scRNA-seq analyses has been assessing gene expression changes, several approaches have been proposed in recent years to identify changes at the DNA level from scRNA-seq data. In this study, we evaluated the relative performance of six strategies for calling single-nucleotide variants from scRNA-seq data using 381 single-cell transcriptomes from five cancer patients. Specifically, we focused on the quality of the inferred genotypes and the resulting single-cell phylogenies. We found that scAllele, Monopogen, and Monovar consistently returned phylogenetically informative genotype calls, providing more precise signals of discrimination between tumor and normal cells within heterogeneous samples and among distinct subclonal lineages in longitudinal samples. In addition, we evaluated the evolution of gene expression along the cell phylogenies. While most transcriptomic variation was very plastic and did not correlate with the cell phylogeny, a group of genes associated with cell cycle processes showed a strong phylogenetic signal in one of the patients, underscoring a potential link between gene expression patterns and lineage-specific traits in the context of cancer progression. In summary, our study highlights the potential of scRNA-seq data for inferring cell phylogenies to decipher the evolutionary dynamics of cell populations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3