Abstract
1AbstractSingle cell ATAC-seq (scATAC) shows great promise for studying cellular heterogeneity in epigenetic landscapes, but there remain significant challenges in the analysis of scATAC data due to the inherent high dimensionality and sparsity. Here we introduce scBasset, a sequence-based convolutional neural network method to model scATAC data. We show that by leveraging the DNA sequence information underlying accessibility peaks and the expressiveness of a neural network model, scBasset achieves state-of-the-art performance across a variety of tasks on scATAC and single cell multiome datasets, including cell type identification, scATAC profile denoising, data integration across assays, and transcription factor activity inference.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献