Cis-topic modelling of single-cell epigenomes

Author:

González-Blas Carmen BravoORCID,Minnoye LiesbethORCID,Papasokrati Dafni,Aibar SaraORCID,Hulselmans GertORCID,Christiaens Valerie,Davie Kristofer,Wouters JasperORCID,Aerts SteinORCID

Abstract

AbstractSingle-cell epigenomics provides new opportunities to decipher genomic regulatory programs from heterogeneous samples and dynamic processes. We present a probabilistic framework called cisTopic, to simultaneously discover “cis-regulatory topics” and stable cell states from sparse single-cell epigenomics data. After benchmarking cisTopic on single-cell ATAC-seq data, single-cell DNA methylation data, and semi-simulated single-cell ChIP-seq data, we use cisTopic to predict regulatory programs in the human brain and validate these by aligning them with co-expression networks derived from single-cell RNA-seq data. Next, we performed a time-series single-cell ATAC-seq experiment after SOX10 perturbations in melanoma cultures, where cisTopic revealed dynamic regulatory topics driven by SOX10 and AP-1. Finally, machine learning and enhancer modelling approaches allowed to predict cell type specific SOX10 and SOX9 binding sites based on topic specific co-regulatory motifs. cisTopic is available as an R/Bioconductor package at http://github.com/aertslab/cistopic.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3