Enhancer grammar of liver cell types and hepatocyte zonation states

Author:

González-Blas Carmen BravoORCID,Matetovici IrinaORCID,Hillen HanneORCID,Taskiran Ibrahim IhsanORCID,Vandepoel Roel,Christiaens ValerieORCID,Sansores-García LeticiaORCID,Verboven ElisabethORCID,Hulselmans GertORCID,Poovathingal SureshORCID,Demeulemeester JonasORCID,Psatha Nikoleta,Mauduit David,Halder GeorgORCID,Aerts SteinORCID

Abstract

Cell type identity is encoded by gene regulatory networks (GRN), in which transcription factors (TFs) bind to enhancers to regulate target gene expression. In the mammalian liver, lineage TFs have been characterized for the main cell types, including hepatocytes. Hepatocytes cover a relatively broad cellular state space, as they differ significantly in their metabolic state, and function, depending on their position with respect to the central or portal vein in a liver lobule. It is unclear whether this spatially defined cellular state space, called zonation, is also governed by a well-defined gene regulatory code. To address this challenge, we have mapped enhancer-GRNs across liver cell types at high resolution, using a combination of single cell multiomics, spatial omics, GRN inference, and deep learning. We found that cell state changes in transcription and chromatin accessibility in hepatocytes, liver sinusoidal endothelial cells and hepatic stellate cells depend on zonation. Enhancer-GRN mapping suggests that zonation states in hepatocytes are driven by the repressors Tcf7l1 and Tbx3, that modulate the core hepatocyte GRN, controlled by Hnf4a, Cebpa, Hnf1a, Onecut1 and Foxa1, among others. To investigate how these TFs cooperate with cell type TFs, we performed anin vivomassively parallel reporter assay on 12,000 hepatocyte enhancers and used these data to train a hierarchical deep learning model (called DeepLiver) that exploits both enhancer accessibility and activity. DeepLiver confirms Cebpa, Onecut, Foxa1, Hnf1a and Hnf4a as drivers of enhancer specificity in hepatocytes; Tcf7l1/2 and Tbx3 as regulators of the zonation state; and Hnf4a, Hnf1a, AP-1 and Ets as activators. Finally, taking advantage ofin silicomutagenesis predictions from DeepLiver and enhancer assays, we confirmed that the destruction of Tcf7l1/2 or Tbx3 motifs in zonated enhancers abrogates their zonation bias. Our study provides a multi-modal understanding of the regulatory code underlying hepatocyte identity and their zonation state, that can be exploited to engineer enhancers with specific activity levels and zonation patterns.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3