Processive movement ofStaphylococcus aureusessential septal peptidoglycan synthases is independent of FtsZ treadmilling and drives cell constriction

Author:

Schäper Simon,Brito António D.,Saraiva Bruno M.,Squyres Georgia R.ORCID,Holmes Matthew J.,Garner Ethan C.,Hensel Zach,Henriques Ricardo

Abstract

Abstract Bacterial cell division is mediated by the tubulin-homolog FtsZ, which recruits peptidoglycan (PG) synthesis enzymes to the division site. Septal PG synthases promote inward growth of the division septum, but the mechanisms governing the spatiotemporal regulation of these enzymes are poorly understood. Recent studies on various organisms have proposed different models for the relationship between the movement and activity of septum-specific PG synthases and FtsZ treadmilling. Here, we studied the movement dynamics of conserved cell division proteins relative to the rates of septum constriction and FtsZ treadmilling in the Gram-positive pathogenStaphylococcus aureus. The septal PG synthesis enzyme complex FtsW/PBP1 and its putative activator protein, DivIB, moved processively, around the division site, with the same velocity. Impairing FtsZ treadmilling did not affect FtsW and DivIB velocities or septum constriction rates. Contrarily, inhibition of PG synthesis slowed down or completely stopped both septum constriction and the directional movement of FtsW/PBP1 and DivIB. Our findings support a model forS. aureusin which a single population of processively moving FtsW/PBP1 remains associated with DivIB to drive cell constriction independently of treadmilling FtsZ filaments.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3