Development and testing of a novel Killer-Rescue self-limiting gene drive system in Drosophila melanogaster

Author:

Webster Sophia H.,Vella Michael R.,Scott Maxwell J.

Abstract

AbstractWe report the development and laboratory testing of a novel Killer-Rescue (K-R) self-limiting gene drive system in Drosophila melanogaster. This K-R system utilizes the well-characterized Gal4/UAS binary expression system and the Gal4 inhibitor, Gal80. Three killer (K) lines were tested; these used either an autoregulated UAS-Gal4 or UAS-Gal4 plus UAS-hid transgene. One universal rescue (R) line was used, UAS-Gal80, to inhibit Gal4 expression. The K lines are lethal and cause death in the absence of R. We show that Gal4 RNA levels are high in the absence of R. Death is possibly due to transcriptional squelching from high levels of Gal4. When R is present, Gal4 activation of Gal80 would lead to inhibition of Gal4 and prevent overexpression. With a single release ratio of 2:1 engineered K-R to wildtype, we find that K drives R through the population while the percent of wild type individuals decreases each generation. The choice of core promoter for a UAS-Gal4 construct strongly influences the K-R system. With the strong hsp70 core promoter, K was very effective but was quickly lost from the population. With the weaker DSCP core promoter, K persisted for longer allowing the frequency of individuals with at least one copy of R to increase to over 98%. This simple gene drive system could be readily adapted to other species such as mosquito disease vectors for driving anti-viral or anti-parasite genes.SignificanceHere we report the development and testing of a novel self-limiting gene drive system, Killer-Rescue, in Drosophila melanogaster. This system is composed of an auto-regulated Gal4 Killer (K) and a Gal4-activated Gal80 Rescue (R). Overexpression of Gal4 is lethal but in the presence of R, activation of Gal80 leads to much lower levels of Gal4 and rescue of lethality. We demonstrate that with a single 2:1 engineered to wildtype release, more than 98% of the population carry R after eight generations. We discuss how this Killer-Rescue system may be used for population replacement in a human health pest, Aedes aegypti, or for population suppression in an agricultural pest, Drosophila suzukii.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3